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This note gives a vanatIOn of a Jackson-type theorem by Andreev,
Popov, and Sendov [1] for best one-sided approximations by splines. The
main theorem states how well a function can be approximated by the
average of upper and lower bounding splines of a given order with respect
to the U = U[O, 1] norm of a modified modulus of continuity.

In general, we consider functions whose kth derivatives are bounded on
[0, 1J. Let t denote the knot sequence {O=XO<Xl < '" <Xn = 1}. The
ith normalized basic spline of order k with the knot sequence t is denoted
by Mi,k,T and is defined by

i+k [i+k 1 ]
M;(x) =Mi,k,T(X) = j~i ni (x

j
- x

m
) k(xj - X)\-l

m#j

where

=0, x< t;

i=O, 1,00.,n-k, It is well known [2J that Mi(x»O for XE(Xi,Xi+k),
Mi(x) =°for x ¢ (Xi' Xi+k), and J,:, <Xl Mi(x) dx = 1. Let Yk'T be the linear
space of all kth degree splines on the interval [0, 1J with knot sequence t.

That is, s belongs to Yk,T if SECk ~ 1[0, 1] and its restriction on [x;, Xi + 1]
is an algebraic polynomial of degree k for i = 0, 1'00" n - 1. Clearly
Mi(x) E Yk-l,T' The problem of best one-sided U (1:'f;p:'f; CX))
approximation by splines in Yk,T for functions f defined on [0, 1J is the
study of

[1 Jl~
Ek,T(f)U = inf f (s(x) -1(x))P dx

s,1 0
(p ~ 1)
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and
Ek,t(f)LOO = infsup(s(x) -/(x)),

s,l x
XE [0, IJ

where I, s E 9k,t satisfy I(x) ::S;f(x) ::s; s(x) for all x E [0, 1]. See [1].
The specific aim of this note is to consider a related LP approximation

problem Fk,t(f)u (for 1 ::S;p::S; (0) with respect to the average of bounding
splines and derive a Jackson-type theorem relating the errors Fk,t> Ek,t for
U (l ::S;p::S; (0) and a modified modulus of continuity defined by

belong to the domain of f
More specifically, we consider the following:

DEFINITION 1.

Fk,t(f)u = ief (( k(X)_l(x);S(X)IP dxYIP

. I I(X)+S(X)!
Fk,t(f)L'v=lefs~p f(x)- 2

where I, S E 9k,t and I(x) ::S;f(x) ::s; s(x) for all x in [0, 1].

We need the following:

LEMMA 1. Let f have an integrable bounded derivative f' on [0, 1J, and
,={0=XO<x1 <'" <xn=l} with Lln=max{lxi+l-xil,O::S;i::s;n-l}.
Let 1 ::S;p::S; 00. Then for any integer k ~ 1,

(1) Fk,t(f)u::S;!Ek,t(fb,

(2) Fk,t(f)u::S; (k + 1) LlnFk-1.rCf')u, and

(3) Fk,t(f)u::S; ((k + 1)/2) LI nEk- I,<(f')u.

Proof Part (1) follows immediately from the inequality If(x) - (l(x) +
s(x) )/21 ::s; (s(x) -/(x) )/2 for I, SE 9k,t such that I(x) ::s;f(x)::s; s(x) for all x in
[0, 1].

The proof of part (2) is similar to the constructive proof in [1,
Lemma 10, p. 893]. Since 9k,t contains constants, we can assume without
loss of generality that f(O) = O. Let e> 0 and find 1*, s* E 9k _I,t such that
I*(x) ::S;f'(x) ::s; s*(x) for x in [0, 1J and

II

' 1*(X)+s*(X)11 'f (x) - 2 u ::s; Fk-I,t(f )u + e.
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rx i = r+ 1

(f'(X)-s*(x))dx~O
Xi

Pi= r+ 1

(f'(x)-I*(x))dx~O,
x,

i = 0, 1,... , n - 1.

For x E [0, 1], define

s(x)=r s*(t)dt+ n-t-
I
rxd

x

Mi+l(t)dt
o i=O 0

I(x) =r I*(t) dt + n-t-
I

PirM i+I(t) dt.
o ;~O 0

Clearly I and sE!fk.t. Now we show that I(x)~j(x)~s(x)for x in [0,1].
Let x E (Xi" Xi' + d. Then

j(x)-/(x)= [f'(t)dt-/(x)

n-k-I
= r [f'(t) -I*(t)] dt - L: PirM i+I(t) dt

o i=O 0

i* -1 x

= L: Pi+ f ,[f'(t)-l*(t)] dt
i=O xi

i"'" - k - t i* - 1 x

- L: Pi- L Pi f. M i+I(t) dt
1=0 ;= '* - k 0

= (, [f'(t) -I*(t)] dt + i~'t~k p{1- rMi+ 1(t) dtJ~°
I

as the integrands and the Pi are greater than or equal to zero and
So M i+I(t) dt ~ 1.

Next

s(x)-j(x)=s(x)-rf'(t)dt

= f (s*(t)-f'(t))dt+ n-±-I rxif Mi+I(t)dt
o i~O 0

= i'f I (-rx,.) +r (s*(t) - f'(t)) dt
i=O Xi
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j* - k - I i"'" - 1 x

+ L lXi+ I ail Mi+l(t)dt
i~O i=i*-k 0

as lXi ~ 0 by definition and fii M;+ 1(t) dt ~ 1.
So for p~ 1, we write

127

By the triangular inequality, basic integral properties, and
(1- fo M i + 1{t) dt):E; 1 for all i, we have

(I I [fX I' 1*(l)+S*(t)! 1 ;*-1 JP )l/P
~ 0 Xi' f (l) - 2 dt +2. i*~ k ICl: i + PI! dx

=(( U;, /J,(t)_I*(t)~5*(t)1 dl

1 i*-I/ fx ,-1 ( 1*(t)+S*(t») lJP )IIP+2: I f'(x)- 2 dt dx
i* -k Xi

~(f: U:,. \!'(l)_'*(I);S*(t)! dt
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1 i*-lfxi + 1 \ 1*(t)+S*(t)\]P )liP+ - L: f'(t)- 2 dt dx
2 i*-k Xi

=(( U;*-k k,u)_I*(t);S*(t)! dtT dx )'iP

~(r[r \f'(t)_I*(t)+S*(t)\dt]P dX)l
iP

o x-(k+l)An 2

=(([{k+l)
An

lf'(X_(k+1)L1 n +t)

_ l*(x - (k + 1) L1 n + t) ; s*(x - (k + 1) L1 n + t)IdtTdx )'iP

~f~k+l)An(( \f'(X-(k+1)L1 n +t)

_1*(X-(k+1)L1 n +t);S*(X-(k+1)L1 n +tT dx),iP dt

by the Minkowski integral inequality [3, p. 271],

by assumption,

This proves part (2) for p ~ 1.
For p = 00 we have by a similar argument,

Ilf(x)_I(X);S(X)Loo =s~p /!(X)_I(X);S(X)1

f(k+l)An I
~s~p 0 f'(x-(k+1)Ll n +t)

1*(x - (k + 1) L1 n + t) ; s*(x - (k + 1) L1 n + t) \dt

f(k+l)An I
~ sup f'(x-(k+1)L1 n +t)

o x

1*(x - (k + 1) L1 n + t) + s*(x - (k + 1) L1 n + t)I
- ~

2
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for all e > O.

And so part (2) is proved.
Part (3) follows immediately by applying parts (2) and (1) successively.

We can now prove the following:

THEOREM 1. Iff is bounded on [0,1], then for 1~p ~ 00

Proof Let r={O=xo< .. , <xn =l} and An =max j lx j -x j _t1,
i = 1,..., n. Set

sAx) =sup f(t),

ST(l)= lim ST(X)
x~l

and

IT(x) = inf f(t),
T

IAl) = lim IT(x).
x--+1

Also let

S(j, x; J) = sup f(t)

I(j, x; (J) = inf f( t)

It follows immediately that

where It - xl ~ J/2

where It - xl ~ J/2.

We observe that Sn IT E So,n and

w(j, x, J) = S(j, x; J) - I(j, x; J).

Also we will need the property ([1, Lemma 5, p.890]) that for any
Riemann-integrable function f and integer k

II w(j; x; k(j)11 £P ~ k II w(j; x; (j)11 £P.

So finally
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Our next results follow from our above work and results cited in [1].

THEOREM. Let f E Ck- 1[0, 1] and have an integrable bounded kth
derivative on [0, 1]. Then for 1~p ~ 00

Proof Using Lemma 1, part (2), k times and then Theorem 1 yields

Fk,r(f)LP ~ (k + 1) .1 n Fk- 1,r(!')LP ~ ,,' ~ (k + 1)! .1~Fo,r(f(k))LP

~(k+ 1)! Ll~ Ilw(f(kl;X;Lln)llu.

COROLLARY 1. Let f E Ck
-1 [0, 1] and have an integrable bounded kth

derivative f(k); then

(1) Fk,r(f)v" ~ (k + 1)! .1~jl(f(k); .1 n ) where jl is the modulus of con
tinuity, jl(f; 15) = sup If(x) - f(Y)1 and Ix - yl ~ J.

(2) Also iff is of bounded variation on [0, 1], then Fk.r(f)L ~ (k + 1)!
.1~+ 1Vb(f(k)), where Vb denotes the variation of the function on [0, 1].

Proof First we observe that the best one-sided uniform approximation
from a linear approximating family which includes constants is obtained by
translating the best uniform approximation (either up or down). So the
error thus obtained will be exactly twice the unconstrained error. Therefore
the average (l(x)+s(x))/2, where l(x), s(x) are specified above, is the best
uniform approximation in this case. The proof follows immediately from
part 2 of Lemma 1; II w(f; x; 15) II L00 = jl(f; 15) and [1, Corollary 1, p. 894]
where the analogous inequalities for Ek,r are

and
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Part (2) of Corollary 1 is analogous to a Freund-Popov theorem [4] for
Ek,T'

The next corollary is an analogue of a Babenko-Ligun theorem [5] for
Ek,T where the interval [0, 1] is replaced by [0, 2n].

COROLLARY 2. LetfE Ck[O, 2n], Ilf(k+ I)llu < 00, and (J = {j 2n/n }'i=o;
then

Fk,,,(f)u ~ C(k) Ilf(k+ 1)1/ un -k-l.

Proof Again the proof follows immediately from Lemma 1, part (1),
and

In conclusion we remark that further generalizations of Theorem 1 can
be obtained by weakening conditions on modulus of continuity, or by
extending it to IR n using techniques in the preprint by Popov and Szabados
[6].
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